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Fig. 1: Using Tilt-Bot, we collect 15,000 interactions on 60 different objects by tilting them in a tray. When sufficiently tilted, the object
slides across the tray and hits the walls of the tray. This generates sound, which is captured by four contact microphones mounted on each
side of the tray. An overhead camera records visual (RGB+Depth) information, while the robotic arm applies the tilting actions through
end-effector rotations.

Abstract—Truly intelligent agents need to capture the interplay
of all their senses to build a rich physical understanding of their
world. In robotics, we have seen tremendous progress in using
visual and tactile perception; however, we have often ignored a
key sense: sound. This is primarily due to the lack of data that
captures the interplay of action and sound. In this work, we
perform the first large-scale study of the interactions between
sound and robotic action. To do this, we create the largest
available sound-action-vision dataset with 15,000 interactions
on 60 objects using our robotic platform Tilt-Bot. By tilting
objects and allowing them to crash into the walls of a robotic
tray, we collect rich four-channel audio information. Using this
data, we explore the synergies between sound and action and
present three key insights. First, sound is indicative of fine-
grained object class information, e.g., sound can differentiate
a metal screwdriver from a metal wrench. Second, sound also
contains information about the causal effects of an action, i.e.
given the sound produced, we can predict what action was applied
to the object. Finally, object representations derived from audio
embeddings are indicative of implicit physical properties. We
demonstrate that on previously unseen objects, audio embeddings
generated through interactions can predict forward models 24%
better than passive visual embeddings. Project videos and data
are at https://dhiraj100892.github.io/swoosh/

I. INTRODUCTION

Imagine the opening of a champagne bottle! Most vivid
imaginations not only capture the celebratory visuals but also
the distinctive ‘pop’ sound created by the act. Our world is
rich and feeds all of our five senses – vision, touch, smell,
sound, and taste. Of these, the senses of vision, touch, and
sound play a critical role in our rich physical understanding

of objects and actions. A truly intelligent agent would need
to capture the interplay of all the three senses to build a
physical understanding of the world. In robotics, where the
goal is to perform a physical task, the vision has always
played a central role. Vision is used to infer the geometric
shape [24], track objects [40], infer object categories [26] and
even direct control [27]. In recent years, the sense of touch
has also received increasing attention for recognition [37]
and feedback control [30]. But what about sound? From
the squeak of a door to the rustle of a dried leaf, sound
captures rich object information that is often imperceptible
through visual or force data. Microphones (sound sensors)
are also inexpensive and robust, yet we haven’t seen sound
data transform robot learning. There hardly exist any systems,
algorithms, or datasets that exploit sound as a vehicle to build
physical understanding. Why is that? Why does sound appear
to be a second-class citizen among perceptual faculties?

The key reason lies at the heart of sound generation. Sound
generated through an interaction, say a robot striking an object,
depends on the impact of the strike, the structure of the
object, and even the location of the microphone. This intricate
interplay that generates rich data also makes it difficult to
extract information that is useful for robotics. Although recent
work by Clarke et al. [10] has used sound to determine the
amount of granular material in a container, we believe there
lies much more information in the sound of interactions. But
what sort of information can be extracted from this sound?

In this paper, we explore the synergy between sound and
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action to gain insight into what sound can be used for. To begin
this exploration we will first need a large and diverse dataset
that contains both sound and action data. However, most
existing sound datasets do not contain information about the
action, while most action datasets do not contain information
about sound. To solve this, we create the largest sound-action-
vision dataset available with 15,000 interactions on over 60
objects with our Tilt-Bot robot Figure 1. Each object is placed
in a tray mounted on a robot arm that is tilted with a random
action until the object hits the walls of the tray and makes
a sound. This setup allows us to robustly collect sound and
action data over a diverse set of objects. But how is this data
useful? Through Tilt-Bot’s data, we present three key insights
about the role of sound in action.

The first insight is that sound is indicative of fine-grained
object information. This implies that just from the sound
an object makes, a learned model can identify the object
with 79.2% accuracy from a set of diverse 60 objects, which
includes 30 YCB objects [8]. Our second insight is that sound
is indicative of action. This implies that just from hearing
the sound of an object, a learned model can predict what
action was applied to the object. On a set of 30 previously
unseen objects, we achieve a 0.027 mean squared error which
is 42% better than learning from only visual inputs. Our final
insight is that sound is indicative of the physical properties of
an object. This implies that just from hearing the sound an
object makes, a learned model can infer the implicit physical
properties of the object. To test this implicit physics, we show
that a learned audio-conditioned forward model achieves a L1
error of 0.193 on previously unseen objects, which is 24%
lesser than forward models trained using visual information.
This further indicates that audio embeddings, generated from a
previous interaction, can capture information about the physics
of an object significantly better than visual embeddings. One
could envision using these features to learn policies that
first interact to create sound and then use the inferred audio
embeddings to perform actions [44].

In summary, we present three key contributions in this
paper: (a) we create the largest sound-action-vision robotics
dataset; (b) we demonstrate that we can perform fine grained
object recognition using only sound; and (c) we show that
sound is indicative of action, both for post-interaction predic-
tion, and pre-interaction forward modeling. Tilt-Bot’s sound-
action-vision data, along with audio embeddings will be pub-
licly released.

II. RELATED WORK

A. Multi-modal Learning with Sound

Recently, there has been a growing interest to use sound
in conjunction with vision, either for generating sound for
mute videos, or to localize the part of the image that produces
sound, or to learn better visual and audio features. For instance,
Owens et al. [32] collected hundreds of videos of people
hitting, scratching, and prodding objects with a drumstick.
This data was then used to train a recurrent neural network
which synthesizes sound from silent videos. However, relying

on humans for data collection is a considerable bottleneck to
scale up the approach. Similarly, Zhang et al. [42] build a
simulator to generate sounds for different objects and then
used it to learn the physical properties of objects. How-
ever, due to the domain gap between simulation and real,
widespread application of these techniques has been limited.
Aytar et al. [7] uses the natural synchronization between
vision and sound to learn an acoustic representation using
two-million unlabelled videos. Similarly, Arandjelovic and
Zisserman [5] looks at raw unconstrained videos to learn
visual and audio representations that perform on par with
state-of-the-art self-supervised approaches. In a similar spirit,
we also learn audio representations, albeit through action, to
be used for downstream tasks. Arandjelovic and Zisserman
[6], Senocak et al. [38] further explores the audio-visual
correspondence in videos to localize the object that sounds
in an image, given the audio signal. Zhao et al. [43] has taken
this idea one step further. Given the audio signal, they separate
it into a set of components that represents the sound from
each pixel. In contrast to these works, we look at obtaining
a richer representation of sound by studying its interactions
with action.

B. Learning forward models

Standard model-based methods, based on the estimated
physical properties and known laws of physics, try to calculate
a sequence of control actions to achieve the goal [25, 31, 14].
Although this has been widely used for object manipulation
tasks in robotics [11], manipulating an unknown object is
still a daunting task for such methods. This is mainly due to
the difficulties in estimating and modeling the novel physical
world [41]. Given the challenges in predicting the physical
properties of a novel environment, several works [13, 18, 4, 23]
try to learn dynamic models based on objects’ interactions
with the environment. However, when we need to use these
learned models on previously unseen objects, these models
also fail to generalize. This is because they often do not contain
object-specific information. One way to get object-specific
information is to use raw visual observations instead of object
state [3, 20, 17]. In these methods, given the observation of a
scene and action taken by the agent, a visual forward model
predicts the future visual observation. These forward models
can then be used to plan robotic motions. In our work, we show
that instead of using visual information, audio embeddings
generated from a previous interaction can be used to improve
these forward models.

C. Multi-modal Datasets

Alongside algorithmic developments, large scale datesets
have enabled the application of machine learning to solve
numerous robotic tasks. Several works like Pinto and Gupta
[35], Levine et al. [28], Agrawal et al. [3], Gandhi et al.
[19] collect large scale visual robotic data for learning ma-
nipulation and navigation skills. Apart from visual data, some
works [30, 36] have also looked at collecting large-scale tactile
data. This tactile or force data can then be used to recover



Fig. 3: Here are 12 interactions collected using Tilt-Bot. Each interaction is visualized as three images. The left image shows the visual
observation of the object before the action is applied along with the applied action. The middle image shows the visual observation after the
interaction, while the right image shows the STFT representation of audio generated by 3 of the 4 microphones.

object properties like softness or roughness. Although these
datasets contain visual information and action data, they ignore
a key sensory modality: sound.

Understanding what information can be obtained from
sound requires a large-scale sound dataset. Early work [32]
collected sound data by recording people interacting with
objects. Although this dataset contains large amounts of sound
data, it does not contain information about the action. In
our work, we show that action information not only helps
regularize object classification but also helps in understanding
the implicit physics of objects. Prior to our work, Clarke et al.
[10] has shown that sound information is indeed helpful for
state-estimation tasks like measuring the amount of granular
material in a container. Here, they exploit the mechanical
vibrations of granular material and the structure around it for
accurate estimation. In our work, instead of a single type of
object, we collect audio data across 60 different objects. This
allows us to learn generalizable audio features that transfer
to previously unseen objects on a variety of tasks like action
regression and forward-model learning.

III. THE TILT-BOT SOUND DATASET

To study the relationship between sound and actions, we
first need to create a dataset with sound and action. In this
section, we describe our data collection setup and other design
decisions.
The Tilt-Bot Setup: A framework to collect large-scale data
needs three key abilities: (a) to precisely control the actions;
(b) to be able to interact with a diverse set of objects; (c)
to record rich and diverse sound; and (d) requires little to no
manual resets. To do this, we present Tilt-Bot (Figure 1).

Tilt-Bot is a robotic tray mounted on a Sawyer robot’s end-
effector. This allows us to precisely control the movements
of the tray by applying rotational and translational actions
on objects inside it. The tray has dimensions of 30 × 30 cm
and a payload of 1 Kg allowing us to place a large range of
common day objects in it. To collect audio information, four
contact microphones [2] are attached on the four sides of the
tray. This allows for the creation of rich audio information
from the interactions of objects with each other and the tray.
To collect visual information, an Intel Realsense Camera [1]
is mounted on the top of the tray to give RGB and Depth
information of the object in the tray. Our current setup allows
us to collect four-channel audio at 44,100Hz, RGB and Depth
at 6Hz, and tray state information (rotation and translation) at
100Hz. Rotational and translational action commands can be
sent at 100Hz.

Data Collection Procedure: Our dataset consists of sound-
action-vision data on 60 objects; 30 of which belong to the
YCB object dataset [8], and 30 are common household
objects. Figure 5 represents some of the objects used for
collecting data using Tilt-Bot. For each object, data is collected
by first placing it in the center of the tray. Then, Tilt-Bot
applies randomly generated rotational actions to the object for
1 hour. We do not apply translational action since we notice
the minimal motion of the object with it. The rotational actions
cause the tray to tilt and make the object slide and hit the walls
of the tray. The sound from the four microphones, along with
the visual data are continually recorded. Furthermore, using a
simple background subtraction technique [45], we can track
the location of the object as it collides with the walls of the
tray. For every contact made with the tray’s wall, which is
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(a) Training the audio embedding (b) Audio embedding for forward models
Fig. 4: To train audio embeddings (a), we perform multi-task learning for instance recognition (top) and action regression (bottom). Once
the embedding network is trained, we can use the extracted audio embeddings as object features for downstream tasks like forward model
learning (b).

Training (set A) Objects Testing (set B) Objects

Fig. 5: Images of some of the object used for collecting data using
Tilt-Bot.

detected by peaks in the audio stream, we segment a four-
second interaction centered around this contact. This amounts
to around 15000 interactions over 60 robotic hours of data
collection. Each of these interactions contains the sound, the
RGB+Depth, and the tracking location of the object during
the interaction. Examples of the data can be seen in Figure 3.
All of our data and pre-processing will be open-sourced.

IV. LEARNING WITH AUDIO

To understand and study the synergies between sound and
action, we focus on three broad categories of learning tasks: (1)
fine-grained classification (or instance recognition) [26, 22],
(2) inverse-model learning (or action regression) [35, 3], and
(3) downstream forward-model learning [15, 13]. In this
section, we will describe our experiments along with insights
to better understand the role of sound with action in the context
of learning and robotics.

A. Processing audio data

Before using audio data for learning, we first need to
convert it into a canonical form. Since we will use audio in
conjunction with images for several experiments, we build on
the representation proposed by Zhao et al. [43]. Here the key

idea is to convert the high dimensional raw audio (705600 for
a 4 second audio recorded at 44.1KHz for 4 audio channels) to
a smaller dimensional image. This is first done by subsampling
each audio channel from 44.1KHz to 11KHz. Then, a Short-
time Fourier transform (STFT) [12] with a FFT window size
of 510 and hop length of 128 is applied on the subsampled
and clipped audio data. For each channel this results in a
64 × 64 representation. Stacking the 4 channel audio, we
get a 64 × 64 × 4 representation. We further apply a log
transformation and clip the representation to between [−5, 5].
This representation allows us to treat audio as an image and
now effectively run 2D convolutions on audio data, which can
capture the temporal correlations from a single audio channel
along with the correlations between multiple audio channels.
Visualization of this representation can be seen in Figure 3,
where the first three channels of audio data (64× 64× 3) are
converted to an RGB image.

B. Fine-grained object classification

Classically, the goal of recognition is to identify which
object is being perceived. This task is generally done using
visual images as input, and is done to test the robustness of
visual feature extractors. In our case, we use this task to study
what type of object-centric information is contained in sound.
For the 60 objects in our TiltBot dataset we first create a
training set with 80% of the data and a testing set with the
remaining 20%. Then, we train a simple CNN [26], that only
takes the audio information as input and outputs the instance
label of the object that generated the sound. This architecture
is similar to top part of Figure 4(a).

On our heldout testing set, this trained model achieves a
classification accuracy of 76.1%. Note that a random classifier
gets a 1.67% accuracy. This shows that audio data contains
fine-grained information about objects. Although Owens et al.



Fig. 6: Visualization of predictions from our inverse model. For each image, the left image is the start state, while the right image is the
end state. The red arrow represents the ground truth actions taken by the robot, while the black arrow corresponds to the actions predicted
by our action-regression model.

[33] demonstrates that audio information can be used to clas-
sify broad categories like wood, metal etc., our results show
for the first time (to our knowledge) that audio information
generated through action gives instance-level information like
screwdriver, scissor, tennis ball etc. To further understand what
information sound gives us, we study the top classification
errors of our model. In Figure 7 we see that there are two main
modes of errors. The first is if instances only differ visually.
For example, a green cube cannot be distinguished from a
blue cube solely from the sound information. The second
error mode is the generated sound is too soft. If the action
causes the object to only move a little and not make too much
sound, information about the object is masked away and causes
classification errors.

C. Inverse-model learning

The goal of learning inverse models is to identify what
action was applied, given observations before and after the
action. From a biological perspective, learning inverse models
implies an understanding of cause and effect and is often
necessary for efficient motor-learning [39]. In the general
setting of this problem, a model takes as input the observations
before and after an interaction and outputs the action applied
during the interaction. In our case, we want to study if sound
contains cause-effect information about actions. Moreover,
since inverse-model learning can be evaluated on previously
unseen objects, we can test the generalization of audio features
not only on objects seen in training but to novel objects as
well.

To demonstrate this, we split our TiltBot objects into two
sets: set A and set B, where both sets contain 30 objects with
15 objects from the YCB dataset. Using an architecture similar
to the bottom part of Figure 4(a), an inverse model is trained
on set A to regress the action. The input into this inverse
model is an image of the object before the interaction, and
the sound generated during the interaction. Note that the image
of the object after the interaction is not given as input. The

action that needs to be output is the 2D projection of the
rotation vector on the planar tray surface. We evaluate the
performance of the inverse model using normalized ([−1, 1])
mean squared error (MSE), where lower is better. Testing this
model on held-out set A objects, we get a MSE of 0.008, while
a random model gives a MSE of 0.4. If we use the image of the
object after the interaction as input instead of audio, we get a
MSE of 0.043. This shows that for these physical interactions
using audio information is not just better than random, but in
fact better than using visual observations. This insight holds
true even when tested on previously unseen set B objects.
With set B testing, audio inverse models give a MSE of 0.027,
which indicates some amount of overfitting on set A objects.
However, this is significantly better than the 0.047 MSE we get
from using purely visual inverse models. Sample evaluations
of our inverse model can be seen in Figure 6.

D. Multi-task audio embedding learning

In the previous two sections, we have seen how sound
contains information about both fine-grained instances of
objects and causal effects of the action. But what is the right
loss function to train an audio embedding that generalizes to
multiple downstream tasks? One way would be to train the
embedding on the instance recognition task on Tilt-Bot data,
while another option would be to train it on the inverse-model
task. Both of these tasks encode different forms of informa-
tion, with classification encoding identifiable properties of the
object and inverse model encoding the physical properties of
the object. Inspired from work in multi-task learning [9, 34],
we take the best of both worlds and train a joint embedding
that can simultaneously encode both classification and action
information.

As seen in Figure 4(a), the audio embedding eA is trained
jointly using the classification and the inverse model loss
according to Ltotal = (1− λ)Lclass + λLinv . Note that when
λ = 0, the embedding captures only classification information,
while λ = 1 captures only inverse-model information. We



GT: Blue cube
Cl: Green cube

GT: Green cube
Cl: Blue cube

GT: Yellow cube
Cl: Red cube

GT: Screwdriver
Cl: Med. clamp

Fig. 7: Here we see the top classification errors made by our instance recognition model. There are two key failure modes: (a) misclassifications
between similar objects that have different visual properties like the cubes, and (b) when the sound generated is too soft like the
misclassification of the screwdriver.

Train objects Test objects
λ = 0.0 0.05 0.1 0.2 1.0 0.0 0.1 0.2 1.0 Image

Class. (↑) 0.738 0.780 0.770 0.786 0.027 N/A N/A N/A N/A N/A
Reg. (↓) 0.395 0.024 0.022 0.014 0.008 0.352 0.027 0.020 0.027 0.043

TABLE I: Classification and Regression performance across different methods on the Tilt-Bot dataset. For classification, higher is better
while for regression lower is better.

(a) (b)

Fig. 8: t-SNE plots using audio encoding extracted from the audio
embedding network. (a) represents the training objects and (b) for
testing objects. This plot is best viewed in color.

report the performance of joint learning on held-out data in
Table I. Here, training is performed on set A objects, while
testing is done on set A held-out interactions and unseen set B
objects. For classification, we find that joint learning improves
performance from 73.8% on the 30 set A objects to 78.6%.
When trained on both set A and set B objects, classification
performance improves from 76.1% (Section IV-B) to 79.5%.
On inverse-model learning, we notice that joint learning does
not improve performance on set A. However, on novel set B
objects, we see a significant improvement from 0.027 MSE to
0.020 MSE. Again, this performance is also much better than
learning directly from visual inverse-models at 0.043 MSE.

Another way to understand the information captured in our

audio embeddings is to look at the top three nearest object
instance given an input object instance. In Figure 9 we show
a few of these object retrievals. Interestingly, these features
capture object shapes like matching the long screwdriver to
the long butterknife and matching the yellow cube to other
colored cubes. In Figure 8 we show the tSNE [29] plots of
the features. This further demonstrates how similar objects are
closer, while physically different objects are farther apart.

E. Few shot learning

To further quantify the generalization of the trained audio
embeddings, we perform a few shot learning experiment [16].
We first extract the embeddings corresponding to novel objects
in set B using the embedding model learned on set A. Given
a few k interactions of an object, we classify the object
belonging to test B set using nearest neighbours on the audio
features. Results for this are visualized in Figure 10. All audio
embeddings achieve similar performance on this task going
from around 25% with k = 1 to around 40% with k = 20. We
note that although the performance is more than 2X of using
a random neural-network audio embedding, it significantly
worse than using ImageNet pretrained ResNet [21] features
that have an impressive 75% for k = 1. This shows that for
pure visual similarity tasks, audio information is helpful, but
currently not informative enough compared to state-of-the-art
visual features that are trained on a significantly larger amount
of visual data.

F. Downstream Task: Forward model learning on TiltBot

Our previous experiments demonstrate the importance of
using audio perception. In this section, we investigate if we
can use sound to extract physical properties of an object before
physically interacting with it. This use case is inspired from
recent work on Environment Probing Interactions [44] where
probing interactions are used to understand latent factors
before implementing the real policy. Here the sound generated
through probing interactions would serve as latent parameters
for representing the object.



Fig. 9: Image retrieval results based on audio embedding. Here, the green box image corresponds to the query image and 3 images in the
row (in red) correspond to the closest object retrievals in the audio-embedding space.
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Fig. 10: Classification accuracy on test objects based on k nearest neighbors of various audio embeddings (AE). Here, we note that embeddings
learned through our audio networks are significantly better than random embeddings.

To evaluate the use of audio features for downstream tasks,
we perform forward prediction (See Figure 4(b)). Here given
an object, a random interaction is performed on it and a sound
is generated from this interaction. The embedding network
trained using multi-task learning is then used to extract the
audio embedding, which will serve as our object’s represen-
tation. Then, given this object’s representation, we can train
a forward model that takes as additional input the location
of the object and action applied on the object and outputs
the location of the object after the interaction. To learn this
forward model, the network has to understand the dynamics
of the object. Note that the only object specific information is
given through the audio embedding.

As seen in Table II, we report significant improvements
in forward model prediction from 0.258 L1 error using visual
features to 0.220 L1 error when using the audio embedding
feature on objects seen during forward model training. This
trend continues for novel set B objects, where both the
embedding and forward model was trained on set A objects.
Here we see an even larger improvement with visual features
giving 0.256 L1 error while audio features giving 0.193 L1
error. This shows that audio embedding information is better
able to capture implicit physics of the object as compared to
visual features. Moreover, these features are significantly more
robust than visual features and also generalize to previously
unseen objects.

Fig. 11: Setup for collecting table-top pushing data. (a) represents
the state of the robot before pushing an object, (b) while pushing an
object, and (c) after pushing an object. We record the image of the
table before and after pushing the object along with the action taken
by the robot.

G. Downstream Task: Forward model learning on robotic
pushing

To evaluate how audio embeddings can be useful to perform
tasks outside the tray environment, we perform a table top
pushing experiment. For this, we use a Sawyer robot to collect
push data. Given an object placed on the robots table, we
first perform background subtraction to determine the position
of the object. Then, based on this position we sample two
points such that line joining them will pass through the object.
We record images Istart and Iend to capture the state of



Audio Embeddings No Audio
λ = 0 0.05 0.1 0.2 1.0 ResNet Oracle

Train Objects 0.225 0.221 0.220 0.222 0.239 0.258 0.206
Test Objects 0.195 0.194 0.193 0.1945 0.195 0.256 0.155

TABLE II: Comparison of using audio embeddings versus pre-trained visual embeddings for forward model prediction. Oracle represents
training with object class labels as input.

Fig. 12: Forward model predictions are visualized here as pairs of images. The left image is the observation before the interaction, while the
right image is the observation after the interaction. Based on the object ground truth location (shown as the green dot) before interaction,
the audio embedding of the object and action taken by the robot (shown as a red arrow), trained forward model predicts the future object
location (shown as a red dot).

the table before and after push action being applied by the
robot. In addition to this, we also record position Pstart and
Pend which depicts the starting and ending push location
of the robot end-effector. The robot’s motion {Pstart, Pend}
serves as the pushing action. Visualization of this setup can
be seen in Figure 11. Using this setup we collect a dataset
of 1000 planar pushing interactions on 10 training set and
10 testing set objects. Given this data, we learn an audio
embedding conditioned forward model similar to Figure 4(b).
The model predicts the location of the object in Iend given
object location in Istart, the robots action {Pstart, Pend},
and an audio embedding of the object from a prior TiltBot
interaction. We note that without audio embedding the L2 error
of the pushing location on test-set objects is 0.180 (normalized
coordinates) while using audio embeddings gives a reduced L2
error of 0.159. Although performed in the relaxed state-based
setting, this experiment demonstrates the promise of audio
embeddings in improving robotic tasks like pushing.

V. CONCLUSION

In this work, we perform one of the first studies on the
interactions between sound and action. Through our sound-

action-vision dataset collected using our Tilt-Bot robot, we
present several insights into what information can be extracted
from sound. From fine-grained object recognition to inverse-
model learning, we demonstrate that sound can provide valu-
able information that can be used in downstream motor-control
or robotic tasks. In some domains like forward model learning,
we show that sound in fact provides more information than
can be obtained from visual information alone. We hope that
the Tilt-Bot dataset, which will be publicly released, along
with our findings will inspire future work in the sound-action
domain and find widespread applicability in robotics.
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